
MySQL Tutorial

MySQL Tutorial
Abstract

This is the MySQL Tutorial from the MySQL 6.0 Reference Manual.

Document generated on: 2009-06-02 (revision: 15161)

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. All rights reserved. U.S. Government Rights - Commercial software. Govern-
ment users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. Use is
subject to license terms. Sun, Sun Microsystems, the Sun logo, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo and
MySQL are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. UNIX is a registered trademark in the
U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. Tous droits réservés. L'utilisation est soumise aux termes du contrat de li-
cence.Sun, Sun Microsystems, le logo Sun, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo et MySQL sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may create a printed
copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or
edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Sun disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar me-
dium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dis-
semination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Sun Microsystems, Inc. Sun Microsystems, Inc. and MySQL AB reserve any and all rights to this documentation not ex-
pressly granted above.

For more information on the terms of this license, for details on how the MySQL documentation is built and produced, or if you are interested in
doing a translation, please contact the Documentation Team.

For additional licensing information, including licenses for libraries used by MySQL, see Preface, Notes, Licenses.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in
variety of formats, including HTML, CHM, and PDF formats, see MySQL Documentation Library.

http://www.mysql.com/company/contact/
http://dev.mysql.com/doc/refman/6.0/en/preface.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Tutorial
This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client program to create and use a
simple database. mysql (sometimes referred to as the “terminal monitor” or just “monitor”) is an interactive program that allows
you to connect to a MySQL server, run queries, and view the results. mysql may also be used in batch mode: you place your quer-
ies in a file beforehand, then tell mysql to execute the contents of the file. Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available to which you can connect. If
this is not true, contact your MySQL administrator. (If you are the administrator, you need to consult the relevant portions of this
manual, such as MySQL Server Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only in accessing an existing data-
base, you may want to skip over the sections that describe how to create the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant sections of the manual for more
information on the topics covered here.

iv

http://dev.mysql.com/doc/refman/6.0/en/mysql-description.html#option_mysql_help
http://dev.mysql.com/doc/refman/6.0/en/server-administration.html

Chapter 1. Connecting to and Disconnecting from the Server
To connect to the server, you will usually need to provide a MySQL user name when you invoke mysql and, most likely, a pass-
word. If the server runs on a machine other than the one where you log in, you will also need to specify a host name. Contact your
administrator to find out what connection parameters you should use to connect (that is, what host, user name, and password to
use). Once you know the proper parameters, you should be able to connect like this:

shell> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of your MySQL account. Substi-
tute appropriate values for your setup. The ******** represents your password; enter it when mysql displays the Enter
password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 6.0.12-standard
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

The mysql> prompt tells you that mysql is ready for you to enter commands.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply use the following:

shell> mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): CAN'T CONNECT TO LOCAL MYSQL
SERVER THROUGH SOCKET '/TMP/MYSQL.SOCK' (2), it means that the MySQL server daemon (Unix) or service (Windows) is
not running. Consult the administrator or see the section of Installing and Upgrading MySQL that is appropriate to your operating
system.

For help with other problems often encountered when trying to log in, see Common Errors When Using MySQL Programs.

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the server running on the local host. If this
is the case on your machine, you should be able to connect to that server by invoking mysql without any options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control-D.

Most examples in the following sections assume that you are connected to the server. They indicate this by the mysql> prompt.

1

http://dev.mysql.com/doc/refman/6.0/en/installing.html
http://dev.mysql.com/doc/refman/6.0/en/common-errors.html

Chapter 2. Entering Queries
Make sure that you are connected to the server, as discussed in the previous section. Doing so does not in itself select any database
to work with, but that is okay. At this point, it is more important to find out a little about how to issue queries than to jump right in
creating tables, loading data into them, and retrieving data from them. This section describes the basic principles of entering com-
mands, using several queries you can try out to familiarize yourself with how mysql works.

Here is a simple command that asks the server to tell you its version number and the current date. Type it in as shown here follow-
ing the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+------------------+--------------+
| VERSION() | CURRENT_DATE |
+------------------+--------------+
| 6.0.11-alpha-log | 2009-05-04 |
+------------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

• A command normally consists of an SQL statement followed by a semicolon. (There are some exceptions where a semicolon
may be omitted. QUIT, mentioned earlier, is one of them. We'll get to others later.)

• When you issue a command, mysql sends it to the server for execution and displays the results, then prints another mysql>
prompt to indicate that it is ready for another command.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for the columns. The rows fol-
lowing are the query results. Normally, column labels are the names of the columns you fetch from database tables. If you're re-
trieving the value of an expression rather than a table column (as in the example just shown), mysql labels the column using
the expression itself.

• mysql shows how many rows were returned and how long the query took to execute, which gives you a rough idea of server
performance. These values are imprecise because they represent wall clock time (not CPU or machine time), and because they
are affected by factors such as server load and network latency. (For brevity, the “rows in set” line is sometimes not shown in
the remaining examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here is another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter multiple statements on a single
line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+------------------+
| VERSION() |
+------------------+
| 6.0.11-alpha-log |
+------------------+
1 row in set (0.00 sec)
+---------------------+
| NOW() |
+---------------------+
| 2009-05-04 15:15:00 |
+---------------------+
1 row in set (0.00 sec)

A command need not be given all on a single line, so lengthy commands that require several lines are not a problem. mysql de-
termines where your statement ends by looking for the terminating semicolon, not by looking for the end of the input line. (In other
words, mysql accepts free-format input: it collects input lines but does not execute them until it sees the semicolon.)

2

Here is a simple multiple-line statement:

mysql> SELECT
-> USER()
-> ,
-> CURRENT_DATE;

+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2005-10-11 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a multiple-line query. This is
how mysql indicates that it has not yet seen a complete statement and is waiting for the rest. The prompt is your friend, because it
provides valuable feedback. If you use that feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a command that you are in the process of entering, cancel it by typing \c:

mysql> SELECT
-> USER()
-> \c

mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to indicate that mysql is ready
for a new command.

The following table shows each of the prompts you may see and summarizes what they mean about the state that mysql is in.

Prompt Meaning

mysql> Ready for new command.

-> Waiting for next line of multiple-line command.

'> Waiting for next line, waiting for completion of a string that began with a single quote (“'”).

"> Waiting for next line, waiting for completion of a string that began with a double quote (“"”).

`> Waiting for next line, waiting for completion of an identifier that began with a backtick (“`”).

/*> Waiting for next line, waiting for completion of a comment that began with /*.

Multiple-line statements commonly occur by accident when you intend to issue a command on a single line, but forget the terminat-
ing semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
->

If this happens to you (you think you've entered a statement but the only response is a -> prompt), most likely mysql is waiting
for the semicolon. If you don't notice what the prompt is telling you, you might sit there for a while before realizing what you need
to do. Enter a semicolon to complete the statement, and mysql executes it:

mysql> SELECT USER()
-> ;

+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting for completion of a string). In
MySQL, you can write strings surrounded by either “'” or “"” characters (for example, 'hello' or "goodbye"), and mysql
lets you enter strings that span multiple lines. When you see a '> or "> prompt, it means that you have entered a line containing a
string that begins with a “'” or “"” quote character, but have not yet entered the matching quote that terminates the string. This of-
ten indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
'>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead of wondering why this
query takes so long, notice the clue provided by the '> prompt. It tells you that mysql expects to see the rest of an unterminated
string. (Do you see the error in the statement? The string 'Smith is missing the second single quote mark.)

At this point, what do you do? The simplest thing is to cancel the command. However, you cannot just type \c in this case, because
mysql interprets it as part of the string that it is collecting. Instead, enter the closing quote character (so mysql knows you've fin-

Entering Queries

3

http://dev.mysql.com/doc/refman/6.0/en/select.html

ished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
'> '\c

mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new command.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not completed a backtick-quoted identi-
fier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter an unterminated string, any fur-
ther lines you type appear to be ignored by mysql — including a line containing QUIT. This can be quite confusing, especially if
you do not know that you need to supply the terminating quote before you can cancel the current command.

Entering Queries

4

Chapter 3. Creating and Using a Database
Once you know how to enter commands, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track of various types of information
about them. You can do so by creating tables to hold your data and loading them with the desired information. Then you can an-
swer different sorts of questions about your animals by retrieving data from the tables. This section shows you how to:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations in which a similar type of
database might be used. For example, a database like this could be used by a farmer to keep track of livestock, or by a veterinarian
to keep track of patient records. A menagerie distribution containing some of the queries and sample data used in the following sec-
tions can be obtained from the MySQL Web site. It is available in both compressed tar file and Zip formats at ht-
tp://dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The mysql database describes user access privileges. The test database often is available as a workspace for users to try things
out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES does not show databases
that you have no privileges for if you do not have the SHOW DATABASES privilege. See SHOW DATABASES Syntax.

If the test database exists, try to access it:

mysql> USE test
Database changed

Note that USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon if you like; it does
no harm.) The USE statement is special in another way, too: it must be given on a single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you create in that database can
be removed by anyone else with access to it. For this reason, you should probably ask your MySQL administrator for permission to
use a database of your own. Suppose that you want to call yours menagerie. The administrator needs to execute a command like
this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the host from which you
connect to the server.

3.1. Creating and Selecting a Database
If the administrator creates your database for you when setting up your permissions, you can begin using it. Otherwise, you need to
create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer to your database as menagerie,
not as Menagerie, MENAGERIE, or some other variant. This is also true for table names. (Under Windows, this restriction does

5

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/refman/6.0/en/show.html
http://dev.mysql.com/doc/refman/6.0/en/show-databases.html
http://dev.mysql.com/doc/refman/6.0/en/show-databases.html
http://dev.mysql.com/doc/refman/6.0/en/show-databases.html
http://dev.mysql.com/doc/refman/6.0/en/use.html
http://dev.mysql.com/doc/refman/6.0/en/use.html

not apply, although you must refer to databases and tables using the same lettercase throughout a given query. However, for a vari-
ety of reasons, our recommended best practice is always to use the same lettercase that was used when the database was created.)

Note

If you get an error such as ERROR 1044 (42000): ACCESS DENIED FOR USER 'MONTY'@'LOCALHOST' TO

DATABASE 'MENAGERIE' when attempting to create a database, this means that your user account does not have the
necessary privileges to do so. Discuss this with the administrator or see The MySQL Access Privilege System.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the current database, use this com-
mand:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a mysql session. You can do this
by issuing a USE statement as shown in the example. Alternatively, you can select the database on the command line when you in-
voke mysql. Just specify its name after any connection parameters that you might need to provide. For example:

shell> mysql -h host -u user -p menagerie
Enter password: ********

Note that menagerie in the command just shown is not your password. If you want to supply your password on the command
line after the -p option, you must do so with no intervening space (for example, as -pmypassword, not as -p mypassword).
However, putting your password on the command line is not recommended, because doing so exposes it to snooping by other users
logged in on your machine.

3.2. Creating a Table
Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and what columns should be in
each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and it should contain, as a bare min-
imum, each animal's name. Because the name by itself is not very interesting, the table should contain other information. For ex-
ample, if more than one person in your family keeps pets, you might want to list each animal's owner. You might also want to re-
cord some basic descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age changes as time passes, which
means you'd have to update your records often. Instead, it is better to store a fixed value such as date of birth. Then, whenever you
need age, you can calculate it as the difference between the current date and the birth date. MySQL provides functions for doing
date arithmetic, so this is not difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If you think this type of query is
somewhat silly, note that it is the same question you might ask in the context of a business database to identify clients to whom
you need to send out birthday greetings in the current week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death date in the database, you
can easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the ones identified so far are suffi-
cient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
-> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values vary in length. The lengths
in those column definitions need not all be the same, and need not be 20. You can normally pick any length from 1 to 65535,
whatever seems most reasonable to you. If you make a poor choice and it turns out later that you need a longer field, MySQL
provides an ALTER TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or perhaps 'male' and 'fe-

Creating and Using a Database

6

http://dev.mysql.com/doc/refman/6.0/en/privilege-system.html
http://dev.mysql.com/doc/refman/6.0/en/use.html
http://dev.mysql.com/doc/refman/6.0/en/show-tables.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/char.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html

male'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or what types they have.

For more information about MySQL data types, see Data Types.

3.3. Loading Data into a Table
After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates in 'YYYY-MM-DD' format;
this may be different from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file containing a row for each of your
animals, then load the contents of the file into the table with a single statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs, and given in the order in which
the columns were listed in the CREATE TABLE statement. For missing values (such as unknown sexes or death dates for animals
that are still living), you can use NULL values. To represent these in your text file, use \N (backslash, capital-N). For example, the
record for Whistler the bird would look like this (where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this command:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

Note that if you created the file on Windows with an editor that uses \r\n as a line terminator, you should use:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
-> LINES TERMINATED BY '\r\n';

(On an Apple machine running OS X, you would likely want to use LINES TERMINATED BY '\r'.)

Creating and Using a Database

7

http://dev.mysql.com/doc/refman/6.0/en/datetime.html
http://dev.mysql.com/doc/refman/6.0/en/show-tables.html
http://dev.mysql.com/doc/refman/6.0/en/describe.html
http://dev.mysql.com/doc/refman/6.0/en/describe.html
http://dev.mysql.com/doc/refman/6.0/en/data-types.html
http://dev.mysql.com/doc/refman/6.0/en/load-data.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html

You can specify the column value separator and end of line marker explicitly in the LOAD DATA statement if you wish, but the de-
faults are tab and linefeed. These are sufficient for the statement to read the file pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled by default. See Security
Issues with LOAD DATA LOCAL, for information on how to change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest form, you supply values for each
column, in the order in which the columns were listed in the CREATE TABLE statement. Suppose that Diane gets a new hamster
named “Puffball.” You could add a new record using an INSERT statement like this:

mysql> INSERT INTO pet
-> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

Note that string and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL directly to represent
a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load your records initially using
several INSERT statements rather than a single LOAD DATA statement.

3.4. Retrieving Information from a Table
The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all columns.” which_table
indicates the table from which you want to retrieve data. The WHERE clause is optional. If it is present, condi-
tions_to_satisfy specifies one or more conditions that rows must satisfy to qualify for retrieval.

3.4.1. Selecting All Data
The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT is useful if you want to review your entire table, for example, after you've just loaded it with your initial data
set. For example, you may happen to think that the birth date for Bowser doesn't seem quite right. Consulting your original pedi-
gree papers, you find that the correct birth year should be 1989, not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.4.2. Selecting Particular Rows

Creating and Using a Database

8

http://dev.mysql.com/doc/refman/6.0/en/load-data.html
http://dev.mysql.com/doc/refman/6.0/en/load-data-local.html
http://dev.mysql.com/doc/refman/6.0/en/load-data-local.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/load-data.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/load-data.html
http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/delete.html
http://dev.mysql.com/doc/refman/6.0/en/load-data.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/update.html

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause from the SELECT statement.
But typically you don't want to see the entire table, particularly when it becomes large. Instead, you're usually more interested in
answering a particular question, in which case you specify some constraints on the information you want. Let's look at some selec-
tion queries in terms of questions about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that you made to Bowser's birth
date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser', 'BOWSER', and so forth. The query
result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which animals were born during or
after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both operators, it is a good idea to use
parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
-> OR (species = 'dog' AND sex = 'f');

+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

3.4.3. Selecting Particular Columns
If you do not want to see entire rows from your table, just name the columns in which you are interested, separated by commas. For
example, if you want to know when your animals were born, select the name and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09

Creating and Using a Database

9

http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/logical-operators.html#operator_and
http://dev.mysql.com/doc/refman/6.0/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/6.0/en/logical-operators.html#operator_and
http://dev.mysql.com/doc/refman/6.0/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/6.0/en/logical-operators.html#operator_and
http://dev.mysql.com/doc/refman/6.0/en/logical-operators.html#operator_or

| Slim | 1996-04-29 |
| Puffball | 1999-03-30 |
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear more than once. To minimize
the output, retrieve each unique output record just once by adding the keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth dates for dogs and cats
only, use this query:

mysql> SELECT name, species, birth FROM pet
-> WHERE species = 'dog' OR species = 'cat';

+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

3.4.4. Sorting Rows
You may have noticed in the preceding examples that the result rows are displayed in no particular order. It is often easier to exam-
ine query output when the rows are sorted in some meaningful way. To sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting — like all other comparison operations — is normally performed in a case-insensitive fashion.
This means that the order is undefined for columns that are identical except for their case. You can force a case-sensitive sort for a
column by using BINARY like so: ORDER BY BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order, add the DESC keyword to the
name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
| Puffball | 1999-03-30 |

Creating and Using a Database

10

http://dev.mysql.com/doc/refman/6.0/en/cast-functions.html#operator_binary

Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For example, to sort by type of animal
in ascending order, then by birth date within animal type in descending order (youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
-> ORDER BY species, birth DESC;

+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

Note that the DESC keyword applies only to the column name immediately preceding it (birth); it does not affect the species
column sort order.

3.4.5. Date Calculations
MySQL provides several functions that you can use to perform calculations on dates, for example, to calculate ages or extract parts
of dates.

To determine how many years old each of your pets is, compute the difference in the year part of the current date and the birth date,
then subtract one if the current date occurs earlier in the calendar year than the birth date. The following query shows, for each pet,
the birth date, the current date, and the age in years.

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

Here, YEAR() pulls out the year part of a date and RIGHT() pulls off the rightmost five characters that represent the MM-DD
(calendar year) part of the date. The part of the expression that compares the MM-DD values evaluates to 1 or 0, which adjusts the
year difference down a year if CURDATE() occurs earlier in the year than birth. The full expression is somewhat ungainly, so an
alias (age) is used to make the output column label more meaningful.

The query works, but the result could be scanned more easily if the rows were presented in some order. This can be done by adding
an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet ORDER BY name;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5

Creating and Using a Database

11

http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/string-functions.html#function_right
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_curdate

+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet ORDER BY age;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine which animals these are by check-
ing whether the death value is NULL. Then, for those with non-NULL values, compute the difference between the death and
birth values:

mysql> SELECT name, birth, death,
-> (YEAR(death)-YEAR(birth)) - (RIGHT(death,5)<RIGHT(birth,5))
-> AS age
-> FROM pet WHERE death IS NOT NULL ORDER BY age;

+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special value that cannot be compared
using the usual comparison operators. This is discussed later. See Section 3.4.6, “Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation, year and day are irrelevant; you
simply want to extract the month part of the birth column. MySQL provides several functions for extracting parts of dates, such
as YEAR(), MONTH(), and DAYOFMONTH(). MONTH() is the appropriate function here. To see how it works, run a simple query
that displays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is April. Then the month
value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the month number (12) and look for
animals born in month 13, because there is no such month. Instead, you look for animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to use the number for a partic-
ular month. DATE_ADD() allows you to add a time interval to a given date. If you add a month to the value of CURDATE(), then
extract the month part with MONTH(), the result produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after using the modulo function

Creating and Using a Database

12

http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_dayofmonth
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_date-add
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_curdate
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_month

(MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

Note that MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between 0 and 11. So
the addition has to be after the MOD(), otherwise we would go from November (11) to January (1).

3.4.6. Working with NULL Values
The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing unknown value” and it is treated
somewhat differently from other values. To test for NULL, you cannot use the arithmetic comparison operators such as =, <, or <>.
To demonstrate this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Clearly you get no meaningful results from these comparisons. Use the IS NULL and IS NOT NULL operators instead:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

Note that in MySQL, 0 or NULL means false and anything else means true. The default truth value from a boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which animals are no longer alive us-
ing death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if you do ORDER BY ...
DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an empty string into a column
defined as NOT NULL, but this is not the case. These are in fact values, whereas NULL means “not having a value.” You can test
this easily enough by using IS [NOT] NULL as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact NOT NULL. See Problems
with NULL Values.

3.4.7. Pattern Matching
MySQL provides standard SQL pattern matching as well as a form of pattern matching based on extended regular expressions sim-
ilar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching allows you to use “_” to match any single character and “%” to match an arbitrary number of characters
(including zero characters). In MySQL, SQL patterns are case-insensitive by default. Some examples are shown here. Note that you
do not use = or <> when you use SQL patterns; use the LIKE or NOT LIKE comparison operators instead.

To find names beginning with “b”:

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with “fy”:

Creating and Using a Database

13

http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_mod
http://dev.mysql.com/doc/refman/6.0/en/mathematical-functions.html#function_mod
http://dev.mysql.com/doc/refman/6.0/en/comparison-operators.html#operator_is-null
http://dev.mysql.com/doc/refman/6.0/en/comparison-operators.html#operator_is-not-null
http://dev.mysql.com/doc/refman/6.0/en/query-issues.html#problems-with-null
http://dev.mysql.com/doc/refman/6.0/en/query-issues.html#problems-with-null
http://dev.mysql.com/doc/refman/6.0/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/6.0/en/string-comparison-functions.html#operator_not-like

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the “_” pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you test for a match for this type
of pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and NOT RLIKE, which are synonyms).

Some characteristics of extended regular expressions are:

• “.” matches any single character.

• A character class “[...]” matches any character within the brackets. For example, “[abc]” matches “a”, “b”, or “c”. To
name a range of characters, use a dash. “[a-z]” matches any letter, whereas “[0-9]” matches any digit.

• “*” matches zero or more instances of the thing preceding it. For example, “x*” matches any number of “x” characters,
“[0-9]*” matches any number of digits, and “.*” matches any number of anything.

• A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This differs from a LIKE pattern
match, which succeeds only if the pattern matches the entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use “^” at the beginning or “$” at the
end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are rewritten here to use REGEXP.

To find names beginning with “b”, use “^” to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

If you really want to force a REGEXP comparison to be case sensitive, use the BINARY keyword to make one of the strings a bin-
ary string. This query matches only lowercase “b” at the beginning of a name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY '^b';

To find names ending with “fy”, use “$” to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

Creating and Using a Database

14

http://dev.mysql.com/doc/refman/6.0/en/regexp.html#operator_regexp
http://dev.mysql.com/doc/refman/6.0/en/regexp.html#operator_not-regexp
http://dev.mysql.com/doc/refman/6.0/en/regexp.html#operator_regexp
http://dev.mysql.com/doc/refman/6.0/en/regexp.html#operator_not-regexp
http://dev.mysql.com/doc/refman/6.0/en/regexp.html#operator_regexp
http://dev.mysql.com/doc/refman/6.0/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/6.0/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/6.0/en/regexp.html#operator_regexp
http://dev.mysql.com/doc/refman/6.0/en/regexp.html#operator_regexp
http://dev.mysql.com/doc/refman/6.0/en/cast-functions.html#operator_binary

To find names containing a “w”, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in the previous query to put a
wildcard on either side of the pattern to get it to match the entire value like it would be if you used an SQL pattern.

To find names containing exactly five characters, use “^” and “$” to match the beginning and end of the name, and five instances
of “.” in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

Regular Expressions, provides more information about the syntax for regular expressions.

3.4.8. Counting Rows
Databases are often used to answer the question, “How often does a certain type of data occur in a table?” For example, you might
want to know how many pets you have, or how many pets each owner has, or you might want to perform various kinds of census
operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet table?” because there is
one record per pet. COUNT(*) counts the number of rows, so the query to count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to find out how many pets each
owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2
+--------+----------+

Note the use of GROUP BY to group all records for each owner. Without it, all you get is an error message:

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...)
with no GROUP columns is illegal if there is no GROUP BY clause

COUNT() and GROUP BY are useful for characterizing your data in various ways. The following examples show different ways to
perform animal census operations.

Number of animals per species:

Creating and Using a Database

15

http://dev.mysql.com/doc/refman/6.0/en/regexp.html
http://dev.mysql.com/doc/refman/6.0/en/group-by-functions.html#function_count
http://dev.mysql.com/doc/refman/6.0/en/group-by-functions.html#function_count
http://dev.mysql.com/doc/refman/6.0/en/group-by-functions.html#function_count

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when performed just on dogs and
cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE species = 'dog' OR species = 'cat'
-> GROUP BY species, sex;

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE sex IS NOT NULL
-> GROUP BY species, sex;

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

3.4.9. Using More Than one Table
The pet table keeps track of which pets you have. If you want to record other information about them, such as events in their lives
like visits to the vet or when litters are born, you need another table. What should this table look like? It needs:

• To contain the pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

Creating and Using a Database

16

http://dev.mysql.com/doc/refman/6.0/en/group-by-functions.html#function_count

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
-> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file containing the following informa-
tion.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew toy

Claws 1998-03-17 birthday Gave him a new flea collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be able to perform retrievals on
the records in the event table; the principles are the same. But when is the event table by itself insufficient to answer questions
you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to calculate ages from two dates.
The litter date of the mother is in the event table, but to calculate her age on that date you need her birth date, which is stored in
the pet table. This means the query requires both tables:

mysql> SELECT pet.name,
-> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,
-> remark
-> FROM pet INNER JOIN event
-> ON pet.name = event.name
-> WHERE event.type = 'litter';

+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in one table can be matched to re-
cords in the other. This is easy because they both have a name column. The query uses an ON clause to match up records in the
two tables based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN allows for rows from either table to appear in the
result if and only if both tables meet the conditions specified in the ON clause. In this example, the ON clause specifies that the
name column in the pet table must match the name column in the event table. If a name appears in one table but not the
other, the row will not appear in the result because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean when referring to the
column. This is done by prepending the table name to the column name.

Creating and Using a Database

17

http://dev.mysql.com/doc/refman/6.0/en/create-table.html

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself, if you want to compare re-
cords in a table to other records in that same table. For example, to find breeding pairs among your pets, you can join the pet table
with itself to produce candidate pairs of males and females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
-> FROM pet AS p1 INNER JOIN pet AS p2
-> ON p1.species = p2.species AND p1.sex = 'f' AND p2.sex = 'm';

+--------+------+--------+------+---------+
| name | sex | name | sex | species |
+--------+------+--------+------+---------+
Fluffy	f	Claws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
+--------+------+--------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which instance of the table each
column reference is associated with.

Creating and Using a Database

18

Chapter 4. Getting Information About Databases and Tables
What if you forget the name of a database or table, or what the structure of a given table is (for example, what its columns are
called)? MySQL addresses this problem through several statements that provide information about the databases and tables it sup-
ports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To find out which database is cur-
rently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the name of a table), use this com-
mand:

mysql> SHOW TABLES;
+---------------------+
| Tables_in_menagerie |
+---------------------+
| event |
| pet |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name, where db_name is the name
of the database. See SHOW TABLES Syntax, for more information.

If you want to find out about the structure of a table, the DESCRIBE command is useful; it displays information about each of a ta-
ble's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the column can contain NULL
values, Key indicates whether the column is indexed, and Default specifies the column's default value. Extra displays special
information about columns: If a column was created with the AUTO_INCREMENT option, the value will be auto_increment
rather than empty.

DESC is a short form of DESCRIBE. See DESCRIBE Syntax, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW CREATE TABLE statement.
See SHOW CREATE TABLE Syntax.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See SHOW INDEX Syntax,
for more about this statement.

19

http://dev.mysql.com/doc/refman/6.0/en/show-databases.html
http://dev.mysql.com/doc/refman/6.0/en/information-functions.html#function_database
http://dev.mysql.com/doc/refman/6.0/en/show-tables.html
http://dev.mysql.com/doc/refman/6.0/en/describe.html
http://dev.mysql.com/doc/refman/6.0/en/describe.html
http://dev.mysql.com/doc/refman/6.0/en/describe.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/6.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/6.0/en/show-index.html

Chapter 5. Using mysql in Batch Mode
In the previous sections, you used mysql interactively to enter queries and view the results. You can also run mysql in batch
mode. To do this, put the commands you want to run in a file, then tell mysql to read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

shell> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use the --force command-line
option.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script allows you to avoid retyping it each time you
execute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line commands or multiple-statement
sequences of commands. If you make a mistake, you don't have to retype everything. Just edit your script to correct the error,
then tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a pager rather than watching it scroll off the
top of your screen:

shell> mysql < batch-file | more

• You can catch the output in a file for further processing:

shell> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the commands.

• Some situations do not allow for interactive use, for example, when you run a query from a cron job. In this case, you must
use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when you use it interactively. For
example, the output of SELECT DISTINCT species FROM pet looks like this when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output the commands that are ex-

20

http://dev.mysql.com/doc/refman/6.0/en/mysql-description.html#option_mysql_force

ecuted, use mysql -vvv.

You can also use scripts from the mysql prompt by using the source command or \. command:

mysql> source filename;
mysql> \. filename

See Executing SQL Statements from a Text File, for more information.

Using mysql in Batch Mode

21

http://dev.mysql.com/doc/refman/6.0/en/mysql-commands.html#batch-commands

Chapter 6. Examples of Common Queries
Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain traders (dealers). Supposing
that each trader has a single fixed price per article, then (article, dealer) is a primary key for the records.

Start the command-line tool mysql and select a database:

shell> mysql your-database-name

(In most MySQL installations, you can use the database named test).

You can create and populate the example table with these statements:

CREATE TABLE shop (
article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
dealer CHAR(20) DEFAULT '' NOT NULL,
price DOUBLE(16,2) DEFAULT '0.00' NOT NULL,
PRIMARY KEY(article, dealer));

INSERT INTO shop VALUES
(1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
(3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	A	3.45
0001	B	3.99
0002	A	10.99
0003	B	1.45
0003	C	1.69
0003	D	1.25
0004	D	19.95
+---------+--------+-------+

6.1. The Maximum Value for a Column
“What is the highest item number?”

SELECT MAX(article) AS article FROM shop;
+---------+
| article |
+---------+
| 4 |
+---------+

6.2. The Row Holding the Maximum of a Certain Column
Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0004 | D | 19.95 |
+---------+--------+-------+

Other solutions are to use a LEFT JOIN or to sort all rows descending by price and get only the first row using the MySQL-specif-
ic LIMIT clause:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.price < s2.price
WHERE s2.article IS NULL;
SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

22

Note

If there were several most expensive articles, each with a price of 19.95, the LIMIT solution would show only one of
them.

6.3. Maximum of Column per Group
Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article;
+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

6.4. The Rows Holding the Group-wise Maximum of a Certain Field
Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)

FROM shop s2
WHERE s1.article = s2.article);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

The preceding example uses a correlated subquery, which can be inefficient (see Correlated Subqueries). Other possibilities for
solving the problem are to use a uncorrelated subquery in the FROM clause or a LEFT JOIN:

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
SELECT article, MAX(price) AS price
FROM shop
GROUP BY article) AS s2
ON s1.article = s2.article AND s1.price = s2.price;

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no s2.price with a greater value
and the s2 rows values will be NULL. See JOIN Syntax.

6.5. Using User-Defined Variables
You can employ MySQL user variables to remember results without having to store them in temporary variables in the client. (See
User-Defined Variables.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Note

Examples of Common Queries

23

http://dev.mysql.com/doc/refman/6.0/en/correlated-subqueries.html
http://dev.mysql.com/doc/refman/6.0/en/join.html
http://dev.mysql.com/doc/refman/6.0/en/user-variables.html

It is also possible to store the name of a database object such as a table or a column in a user variable and then to use
this variable in an SQL statement; however, this requires the use of a prepared statement. See SQL Syntax for Pre-
pared Statements, for more information.

6.6. Using Foreign Keys
In MySQL, InnoDB tables support checking of foreign key constraints. See The InnoDB Storage Engine, and Foreign Keys.

A foreign key constraint is not required merely to join two tables. For storage engines other than InnoDB, it is possible when de-
fining a column to use a REFERENCES tbl_name(col_name) clause, which has no actual effect, and serves only as a memo
or comment to you that the column which you are currently defining is intended to refer to a column in another table. It is ex-
tremely important to realize when using this syntax that:

• MySQL does not perform any sort of CHECK to make sure that col_name actually exists in tbl_name (or even that
tbl_name itself exists).

• MySQL does not perform any sort of action on tbl_name such as deleting rows in response to actions taken on rows in the ta-
ble which you are defining; in other words, this syntax induces no ON DELETE or ON UPDATE behavior whatsoever.
(Although you can write an ON DELETE or ON UPDATE clause as part of the REFERENCES clause, it is also ignored.)

• This syntax creates a column; it does not create any sort of index or key.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
name CHAR(60) NOT NULL,
PRIMARY KEY (id)

);
CREATE TABLE shirt (

id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
PRIMARY KEY (id)

);
INSERT INTO person VALUES (NULL, 'Antonio Paz');
SELECT @last := LAST_INSERT_ID();
INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);
INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');
SELECT @last := LAST_INSERT_ID();
INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);
SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+
SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |
+----+---------+--------+-------+
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+
SELECT s.* FROM person p INNER JOIN shirt s

ON s.owner = p.id
WHERE p.name LIKE 'Lilliana%'
AND s.color <> 'white';

+----+-------+--------+-------+
| id | style | color | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE TABLE or DESCRIBE:

Examples of Common Queries

24

http://dev.mysql.com/doc/refman/6.0/en/sql-syntax-prepared-statements.html
http://dev.mysql.com/doc/refman/6.0/en/sql-syntax-prepared-statements.html
http://dev.mysql.com/doc/refman/6.0/en/innodb.html
http://dev.mysql.com/doc/refman/6.0/en/differences-from-ansi.html#ansi-diff-foreign-keys
http://dev.mysql.com/doc/refman/6.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/6.0/en/describe.html

SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,
`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

The use of REFERENCES in this way as a comment or “reminder” in a column definition works with MyISAM tables.

6.7. Searching on Two Keys
An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized. See Index Merge Optimization.

You can also solve the problem efficiently by using a UNION that combines the output of two separate SELECT statements. See
UNION Syntax.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
FROM test_table WHERE field1_index = '1'

UNION
SELECT field1_index, field2_index

FROM test_table WHERE field2_index = '1';

6.8. Calculating Visits Per Day
The following example shows how you can use the bit group functions to calculate the number of days per month a user has visited
a Web page.

CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
day INT(2) UNSIGNED ZEROFILL);

INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
(2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To determine how many different days
in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 01 | 3 |
| 2000 | 02 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination, with automatic removal of du-
plicate entries.

6.9. Using AUTO_INCREMENT
The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (id)

);
INSERT INTO animals (name) VALUES

('dog'),('cat'),('penguin'),

Examples of Common Queries

25

http://dev.mysql.com/doc/refman/6.0/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/6.0/en/logical-operators.html#operator_and
http://dev.mysql.com/doc/refman/6.0/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/6.0/en/index-merge-optimization.html
http://dev.mysql.com/doc/refman/6.0/en/union.html
http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/union.html
http://dev.mysql.com/doc/refman/6.0/en/select.html

('lax'),('whale'),('ostrich');
SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

You can retrieve the most recent AUTO_INCREMENT value with the LAST_INSERT_ID() SQL function or the
mysql_insert_id() C API function. These functions are connection-specific, so their return values are not affected by anoth-
er connection which is also performing inserts.

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id() actually return the
AUTO_INCREMENT key from the first of the inserted rows. This allows multiple-row inserts to be reproduced cor-
rectly on other servers in a replication setup.

For MyISAM tables you can specify AUTO_INCREMENT on a secondary column in a multiple-column index. In this case, the gen-
erated value for the AUTO_INCREMENT column is calculated as MAX(auto_increment_column) + 1 WHERE
prefix=given-prefix. This is useful when you want to put data into ordered groups.

CREATE TABLE animals (
grp ENUM('fish','mammal','bird') NOT NULL,
id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (grp,id)

);
INSERT INTO animals (grp,name) VALUES

('mammal','dog'),('mammal','cat'),
('bird','penguin'),('fish','lax'),('mammal','whale'),
('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

Note that in this case (when the AUTO_INCREMENT column is part of a multiple-column index), AUTO_INCREMENT values are
reused if you delete the row with the biggest AUTO_INCREMENT value in any group. This happens even for MyISAM tables, for
which AUTO_INCREMENT values normally are not reused.

If the AUTO_INCREMENT column is part of multiple indexes, MySQL will generate sequence values using the index that begins
with the AUTO_INCREMENT column, if there is one. For example, if the animals table contained indexes PRIMARY KEY
(grp, id) and INDEX (id), MySQL would ignore the PRIMARY KEY for generating sequence values. As a result, the table
would contain a single sequence, not a sequence per grp value.

To start with an AUTO_INCREMENT value other than 1, you can set that value with CREATE TABLE or ALTER TABLE, like
this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

More information about AUTO_INCREMENT is available here:

• How to assign the AUTO_INCREMENT attribute to a column: CREATE TABLE Syntax, and ALTER TABLE Syntax.

• How AUTO_INCREMENT behaves depending on the SQL mode: Server SQL Modes.

Examples of Common Queries

26

http://dev.mysql.com/doc/refman/6.0/en/information-functions.html#function_last-insert-id
http://dev.mysql.com/doc/refman/6.0/en/mysql-insert-id.html
http://dev.mysql.com/doc/refman/6.0/en/information-functions.html#function_last-insert-id
http://dev.mysql.com/doc/refman/6.0/en/mysql-insert-id.html
http://dev.mysql.com/doc/refman/6.0/en/group-by-functions.html#function_max
http://dev.mysql.com/doc/refman/6.0/en/group-by-functions.html#function_max
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/server-sql-mode.html

• Find the row that contains the most recent AUTO_INCREMENT value: Comparison Functions and Operators.

• Set the AUTO_INCREMENT value to be used: Session System Variables.

• AUTO_INCREMENT and replication: Replication Features and Issues.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Server System Variables.

Examples of Common Queries

27

http://dev.mysql.com/doc/refman/6.0/en/comparison-operators.html
http://dev.mysql.com/doc/refman/6.0/en/server-session-variables.html
http://dev.mysql.com/doc/refman/6.0/en/replication-features.html
http://dev.mysql.com/doc/refman/6.0/en/replication-options-master.html#sysvar_auto_increment_increment
http://dev.mysql.com/doc/refman/6.0/en/replication-options-master.html#sysvar_auto_increment_offset
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html

Chapter 7. Queries from the Twin Project
At the places the early MySQL was developed (Analytikerna and Lentus), the founders did systems and field work for a big re-
search project. This project was a collaboration between the Institute of Environmental Medicine at Karolinska Institutet Stockholm
and the Section on Clinical Research in Aging and Psychology at the University of Southern California.

The project involved lots of data collection from all twins in Sweden older than 65 Years (see ht-
tp://ki.se/ki/jsp/polopoly.jsp?d=9610&l=en).

Large parts of the project were administered with a Web interface written using Perl and MySQL.

7.1. Find All Non-distributed Twins
The following query was used to determine what twins should be studied further after a initial screening. The time for this was
around MySQL 3.19 in 1997.

SELECT
CONCAT(p1.id, p1.tvab) + 0 AS tvid,
CONCAT(p1.christian_name, ' ', p1.surname) AS Name,
p1.postal_code AS Code,
p1.city AS City,
pg.abrev AS Area,
IF(td.participation = 'Aborted', 'A', ' ') AS A,
p1.dead AS dead1,
l.event AS event1,
td.suspect AS tsuspect1,
id.suspect AS isuspect1,
td.severe AS tsevere1,
id.severe AS isevere1,
p2.dead AS dead2,
l2.event AS event2,
h2.nurse AS nurse2,
h2.doctor AS doctor2,
td2.suspect AS tsuspect2,
id2.suspect AS isuspect2,
td2.severe AS tsevere2,
id2.severe AS isevere2,
l.finish_date

FROM
twin_project AS tp
/* For Twin 1 */
LEFT JOIN twin_data AS td ON tp.id = td.id

AND tp.tvab = td.tvab
LEFT JOIN informant_data AS id ON tp.id = id.id

AND tp.tvab = id.tvab
LEFT JOIN harmony AS h ON tp.id = h.id

AND tp.tvab = h.tvab
LEFT JOIN lentus AS l ON tp.id = l.id

AND tp.tvab = l.tvab
/* For Twin 2 */
LEFT JOIN twin_data AS td2 ON p2.id = td2.id

AND p2.tvab = td2.tvab
LEFT JOIN informant_data AS id2 ON p2.id = id2.id

AND p2.tvab = id2.tvab
LEFT JOIN harmony AS h2 ON p2.id = h2.id

AND p2.tvab = h2.tvab
LEFT JOIN lentus AS l2 ON p2.id = l2.id

AND p2.tvab = l2.tvab,
person_data AS p1,
person_data AS p2,
postal_groups AS pg

WHERE
/* p1 gets main twin and p2 gets his/her twin. */
/* ptvab is a field inverted from tvab */
p1.id = tp.id AND p1.tvab = tp.tvab AND
p2.id = p1.id AND p2.ptvab = p1.tvab AND
/* Just the screening survey */
tp.survey_no = 5 AND
/* Skip if partner died before 65 but allow emigration (dead=9) */
(p2.dead = 0 OR p2.dead = 9 OR
(p2.dead = 1 AND
(p2.death_date = 0 OR
(((TO_DAYS(p2.death_date) - TO_DAYS(p2.birthday)) / 365)
>= 65))))

AND
(
/* Twin is suspect */
(td.future_contact = 'Yes' AND td.suspect = 2) OR
/* Twin is suspect - Informant is Blessed */
(td.future_contact = 'Yes' AND td.suspect = 1

AND id.suspect = 1) OR
/* No twin - Informant is Blessed */
(ISNULL(td.suspect) AND id.suspect = 1

AND id.future_contact = 'Yes') OR
/* Twin broken off - Informant is Blessed */
(td.participation = 'Aborted'
AND id.suspect = 1 AND id.future_contact = 'Yes') OR
/* Twin broken off - No inform - Have partner */

28

http://ki.se/ki/jsp/polopoly.jsp?d=9610&l=en
http://ki.se/ki/jsp/polopoly.jsp?d=9610&l=en

(td.participation = 'Aborted' AND ISNULL(id.suspect)
AND p2.dead = 0))

AND
l.event = 'Finished'
/* Get at area code */
AND SUBSTRING(p1.postal_code, 1, 2) = pg.code
/* Not already distributed */
AND (h.nurse IS NULL OR h.nurse=00 OR h.doctor=00)
/* Has not refused or been aborted */
AND NOT (h.status = 'Refused' OR h.status = 'Aborted'
OR h.status = 'Died' OR h.status = 'Other')

ORDER BY
tvid;

Some explanations:

• CONCAT(p1.id, p1.tvab) + 0 AS tvid

We want to sort on the concatenated id and tvab in numerical order. Adding 0 to the result causes MySQL to treat the result
as a number.

• column id

This identifies a pair of twins. It is an index in all tables.

• column tvab

This identifies a twin in a pair. It has a value of 1 or 2.

• column ptvab

This is an inverse of tvab. When tvab is 1 this is 2, and vice versa. It exists to save typing and to make it easier for MySQL
to optimize the query.

This query demonstrates, among other things, how to do lookups on a table from the same table with a join (p1 and p2). In the ex-
ample, this is used to check whether a twin's partner died before the age of 65. If so, the row is not returned.

All of the above exist in all tables with twin-related information. We have an index on both id, tvab (all tables), and id,
ptvab (person_data) to make queries faster.

When we did this work, our production machine was a 200MHz UltraSPARC, and on that old hardware this query returned about
150-200 rows in less than one second. The main table had 70k Rows.

7.2. Show a Table of Twin Pair Status
Each twin has a status code called event. The query shown here is used to select all twin pairs combined by event. This indicates
in how many pairs both twins are finished, in how many pairs one twin is finished and the other refused, and so on.

SELECT
t1.event,
t2.event,
COUNT(*)

FROM
lentus AS t1,
lentus AS t2,
twin_project AS tp

WHERE
/* We are looking at one pair at a time */
t1.id = tp.id
AND t1.tvab=tp.tvab
AND t1.id = t2.id
/* Just the screening survey */
AND tp.survey_no = 5
/* This makes each pair only appear once */
AND t1.tvab='1' AND t2.tvab='2'

GROUP BY
t1.event, t2.event;

Queries from the Twin Project

29

http://dev.mysql.com/doc/refman/6.0/en/string-functions.html#function_concat

Chapter 8. Using MySQL with Apache
There are programs that let you authenticate your users from a MySQL database and also let you write your log files into a MySQL
table.

You can change the Apache logging format to be easily readable by MySQL by putting the following into the Apache configura-
tion file:

LogFormat \
"\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
\"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line writes to the log file.

30

	MySQL Tutorial
	Tutorial
	Chapter 1. Connecting to and Disconnecting from the Server
	Chapter 2. Entering Queries
	Chapter 3. Creating and Using a Database
	3.1. Creating and Selecting a Database
	3.2. Creating a Table
	3.3. Loading Data into a Table
	3.4. Retrieving Information from a Table
	3.4.1. Selecting All Data
	3.4.2. Selecting Particular Rows
	3.4.3. Selecting Particular Columns
	3.4.4. Sorting Rows
	3.4.5. Date Calculations
	3.4.6. Working with NULL Values
	3.4.7. Pattern Matching
	3.4.8. Counting Rows
	3.4.9. Using More Than one Table

	Chapter 4. Getting Information About Databases and Tables
	Chapter 5. Using mysql in Batch Mode
	Chapter 6. Examples of Common Queries
	6.1. The Maximum Value for a Column
	6.2. The Row Holding the Maximum of a Certain Column
	6.3. Maximum of Column per Group
	6.4. The Rows Holding the Group-wise Maximum of a Certain Field
	6.5. Using User-Defined Variables
	6.6. Using Foreign Keys
	6.7. Searching on Two Keys
	6.8. Calculating Visits Per Day
	6.9. Using AUTO_INCREMENT

	Chapter 7. Queries from the Twin Project
	7.1. Find All Non-distributed Twins
	7.2. Show a Table of Twin Pair Status

	Chapter 8. Using MySQL with Apache

